图形着色是一个经典且关键的NP硬性问题,是分配尽可能不同颜色的连接节点的问题。但是,我们观察到,最新的GNN在图形着色问题中不太成功。我们从两个角度分析原因。首先,大多数GNN都无法将任务概括为同质性的任务,即在其中分配了不同颜色的图形。其次,GNN受网络深度的界定,使其成为一种本地方法,在最大独立集(MIS)问题中已证明这是非最佳选择的。在本文中,我们专注于流行的GNN类的聚合 - 结合GNNS(AC-GNNS)。我们首先将AC-GNN在着色问题中的功能定义为分配节点不同颜色的能力。该定义与以前的定义不同,该定义是基于同质的假设。我们确定了AC-GNN无法区分的节点对。此外,我们表明任何AC-GNN都是本地着色方法,并且任何局部着色方法都是通过稀疏随机图探索局部方法的极限,从而证明了AC-GNN的非典型性财产。然后,我们证明了模型深度与其着色能力之间的正相关。此外,我们讨论了图形的颜色模棱两可,以应对一些实际约束,例如预固化约束。在上面的讨论之后,我们总结了一系列规则一系列规则,这些规则使GNN颜色均等且功能强大。然后,我们提出了满足这些规则的简单AC-GNN变化。我们从经验上验证了我们的理论发现,并证明我们的简单模型在质量和运行时都大大优于最先进的启发式算法。
translated by 谷歌翻译
Wearable sensors for measuring head kinematics can be noisy due to imperfect interfaces with the body. Mouthguards are used to measure head kinematics during impacts in traumatic brain injury (TBI) studies, but deviations from reference kinematics can still occur due to potential looseness. In this study, deep learning is used to compensate for the imperfect interface and improve measurement accuracy. A set of one-dimensional convolutional neural network (1D-CNN) models was developed to denoise mouthguard kinematics measurements along three spatial axes of linear acceleration and angular velocity. The denoised kinematics had significantly reduced errors compared to reference kinematics, and reduced errors in brain injury criteria and tissue strain and strain rate calculated via finite element modeling. The 1D-CNN models were also tested on an on-field dataset of college football impacts and a post-mortem human subject dataset, with similar denoising effects observed. The models can be used to improve detection of head impacts and TBI risk evaluation, and potentially extended to other sensors measuring kinematics.
translated by 谷歌翻译
Few-shot relation extraction (FSRE) aims at recognizing unseen relations by learning with merely a handful of annotated instances. To generalize to new relations more effectively, this paper proposes a novel pipeline for the FSRE task based on queRy-information guided Attention and adaptive Prototype fuSion, namely RAPS. Specifically, RAPS first derives the relation prototype by the query-information guided attention module, which exploits rich interactive information between the support instances and the query instances, in order to obtain more accurate initial prototype representations. Then RAPS elaborately combines the derived initial prototype with the relation information by the adaptive prototype fusion mechanism to get the integrated prototype for both train and prediction. Experiments on the benchmark dataset FewRel 1.0 show a significant improvement of our method against state-of-the-art methods.
translated by 谷歌翻译
Recent 3D-based manipulation methods either directly predict the grasp pose using 3D neural networks, or solve the grasp pose using similar objects retrieved from shape databases. However, the former faces generalizability challenges when testing with new robot arms or unseen objects; and the latter assumes that similar objects exist in the databases. We hypothesize that recent 3D modeling methods provides a path towards building digital replica of the evaluation scene that affords physical simulation and supports robust manipulation algorithm learning. We propose to reconstruct high-quality meshes from real-world point clouds using state-of-the-art neural surface reconstruction method (the Real2Sim step). Because most simulators take meshes for fast simulation, the reconstructed meshes enable grasp pose labels generation without human efforts. The generated labels can train grasp network that performs robustly in the real evaluation scene (the Sim2Real step). In synthetic and real experiments, we show that the Real2Sim2Real pipeline performs better than baseline grasp networks trained with a large dataset and a grasp sampling method with retrieval-based reconstruction. The benefit of the Real2Sim2Real pipeline comes from 1) decoupling scene modeling and grasp sampling into sub-problems, and 2) both sub-problems can be solved with sufficiently high quality using recent 3D learning algorithms and mesh-based physical simulation techniques.
translated by 谷歌翻译
Sleep stage recognition is crucial for assessing sleep and diagnosing chronic diseases. Deep learning models, such as Convolutional Neural Networks and Recurrent Neural Networks, are trained using grid data as input, making them not capable of learning relationships in non-Euclidean spaces. Graph-based deep models have been developed to address this issue when investigating the external relationship of electrode signals across different brain regions. However, the models cannot solve problems related to the internal relationships between segments of electrode signals within a specific brain region. In this study, we propose a Pearson correlation-based graph attention network, called PearNet, as a solution to this problem. Graph nodes are generated based on the spatial-temporal features extracted by a hierarchical feature extraction method, and then the graph structure is learned adaptively to build node connections. Based on our experiments on the Sleep-EDF-20 and Sleep-EDF-78 datasets, PearNet performs better than the state-of-the-art baselines.
translated by 谷歌翻译
在各种机器学习问题中,包括转移,多任务,连续和元学习在内,衡量不同任务之间的相似性至关重要。最新的测量任务相似性的方法依赖于体系结构:1)依靠预训练的模型,或2)在任务上进行培训网络,并将正向转移用作任务相似性的代理。在本文中,我们利用了最佳运输理论,并定义了一个新颖的任务嵌入监督分类,该分类是模型的,无训练的,并且能够处理(部分)脱节标签集。简而言之,给定带有地面标签的数据集,我们通过多维缩放和串联数据集样品进行嵌入标签,并具有相应的标签嵌入。然后,我们将两个数据集之间的距离定义为其更新样品之间的2-Wasserstein距离。最后,我们利用2-wasserstein嵌入框架将任务嵌入到矢量空间中,在该空间中,嵌入点之间的欧几里得距离近似于任务之间提出的2-wasserstein距离。我们表明,与最佳传输数据集距离(OTDD)等相关方法相比,所提出的嵌入导致任务的比较显着更快。此外,我们通过各种数值实验证明了我们提出的嵌入的有效性,并显示了我们所提出的距离与任务之间的前进和向后转移之间的统计学意义相关性。
translated by 谷歌翻译
人对象相互作用(HOI)检测在活动理解中起着至关重要的作用。尽管已经取得了重大进展,但交互性学习仍然是HOI检测的一个具有挑战性的问题:现有方法通常会产生冗余的负H-O对提案,并且无法有效提取交互式对。尽管已经在整个身体和部分级别研究了互动率,并促进了H-O配对,但以前的作品仅专注于目标人一次(即,从本地角度来看)并忽略了其他人的信息。在本文中,我们认为同时比较多人的身体零件可以使我们更有用,更补充的互动提示。也就是说,从全球的角度学习身体部分的互动:当对目标人的身体零件互动进行分类时,不仅要从自己/他本人,而且还从图像中的其他人那里探索视觉提示。我们基于自我注意力来构建身体的显着性图,以挖掘交叉人物的信息线索,并学习所有身体零件之间的整体关系。我们评估了广泛使用的基准曲线和V-Coco的建议方法。从我们的新角度来看,整体的全部本地人体互动互动学习可以对最先进的发展取得重大改进。我们的代码可从https://github.com/enlighten0707/body-part-map-for-interactimence获得。
translated by 谷歌翻译
在过去的25年中,我们目睹了机器学习在编译器领域的广泛应用。选择和相位订购问题。但是,有限的作品已在最先进的编译器(即LLVM)上游,以将前者无缝集成到编译器的优化管道中,以便由用户容易部署。 MLGO是此类项目的第一个项目之一,它仅努力使用强化学习使用基于ML的INLINER来减少二进制的代码大小。本文介绍了mlgoperf;第一个端到端框架,能够使用LLVM的ML Inliner优化性能。它采用二级ML模型来生成用于训练重新定位的增强学习代理的奖励,该辅助剂以前由MLGO用作主要模型。它通过预测分析功能的函数的速度加速来做到这一点,并为主要模型提供快速训练框架,否则将是不切实际的。实验结果表明,MLGOPERF在LLVM在O3时的优化方面的优化分别为SPEC CPU2006和CBENCH基准分别获得了1.8%和2.2%。此外,提出的方法为我们的基准测试带来了自动点守则区域的26%,可以将其转化为额外的3.7%速度值。
translated by 谷歌翻译
我们建议学习使用隐式功能通过灵巧的手来产生抓握运动来操纵。通过连续的时间输入,该模型可以生成连续且平滑的抓握计划。我们命名了建议的模型连续掌握函数(CGF)。 CGF是通过使用3D人类演示的有条件变异自动编码器的生成建模来学习的。我们将首先通过运动重试将大规模的人类对象相互作用轨迹转换为机器人演示,然后使用这些演示训练CGF。在推断期间,我们使用CGF进行采样,以在模拟器中生成不同的抓握计划,并选择成功的抓握计划以转移到真实的机器人中。通过对不同人类数据的培训,我们的CGF允许概括来操纵多个对象。与以前的计划算法相比,CGF更有效,并且在转移到真正的Allegro手抓住的情况下,成功率显着提高。我们的项目页面位于https://jianglongye.com/cgf
translated by 谷歌翻译
混合样品正则化(MSR),例如混合或cutmix,是一种强大的数据增强策略,可以推广卷积神经网络。先前的经验分析说明了MSR与传统的离线知识蒸馏(KD)之间的正交性能增长。更具体地说,可以通过MSR参与顺序蒸馏的训练阶段来增强学生网络。然而,MSR和在线知识蒸馏之间的相互作用,这是一个更强的蒸馏范式,在那里,一群同伴互相学习的合奏仍然没有探索。为了弥合差距,我们首次尝试将cutmix纳入在线蒸馏中,我们从经验上观察到了重大改进。在这个事实的鼓舞下,我们提出了一个更强大的MSR,专门用于在线蒸馏,称为Cut^nMix。此外,一个新颖的在线蒸馏框架是在切割^nmix上设计的,以通过功能水平相互学习和自我启动的老师来增强蒸馏。对CIFAR10和CIFAR100进行六个网络体系结构的全面评估表明,我们的方法可以始终超过最先进的蒸馏方法。
translated by 谷歌翻译